Two methods used for dating fossils

Precision is enhanced if measurements are taken on multiple samples from different locations of the rock body.Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron. In uranium–lead dating, the concordia diagram is used which also decreases the problem of nuclide loss.Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample.For example, the age of the Amitsoq gneisses from western Greenland was determined to be Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and enough of the daughter product is produced to be accurately measured and distinguished from the initial amount of the daughter present in the material.

For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time.

For instance, carbon-14 has a half-life of 5,730 years.

After an organism has been dead for 60,000 years, so little carbon-14 is left that accurate dating can not be established.

On the other hand, the concentration of carbon-14 falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades.

If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusion, setting the isotopic "clock" to zero.

Leave a Reply